Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The morphology of the Milky Way is still a matter of debate. In order to shed light on uncertainties surrounding the structure of the Galaxy, in this paper, we study the imprint of spiral arms on the distribution and properties of its molecular gas. To do so, we take full advantage of the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic Interstellar Medium) survey that observed a large area of the inner Galaxy in the 13 CO (2–1) line at an angular resolution of 28′′. We analyse the influences of the spiral arms by considering the features of the molecular gas emission as a whole across the longitude–velocity map built from the full survey. Additionally, we examine the properties of the molecular clouds in the spiral arms compared to the properties of their counterparts in the inter-arm regions. Through flux and luminosity probability distribution functions, we find that the molecular gas emission associated with the spiral arms does not differ significantly from the emission between the arms. On average, spiral arms show masses per unit length of ~10 5 –10 6 M ⊙ kpc −1 . This is similar to values inferred from data sets in which emission distributions were segmented into molecular clouds. By examining the cloud distribution across the Galactic plane, we infer that the molecular mass in the spiral arms is a factor of 1.5 higher than that of the inter-arm medium, similar to what is found for other spiral galaxies in the local Universe. We observe that only the distributions of cloud mass surface densities and aspect ratio in the spiral arms show significant differences compared to those of the inter-arm medium; other observed differences appear instead to be driven by a distance bias. By comparing our results with simulations and observations of nearby galaxies, we conclude that the measured quantities would classify the Milky Way as a flocculent spiral galaxy, rather than as a grand-design one.more » « less
- 
            Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π−, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            Incoherent photoproduction in heavy ion ultraperipheral collisions (UPCs) provides a sensitive probe of localized, fluctuating gluonic structures within heavy nuclei. This Letter reports the first measurement of the photon-nucleon center-of-mass energy ( ) dependence of this process in PbPb UPCs at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using of data recorded by the CMS experiment. The measurement covers a wide range of , probing gluons carrying a fraction of nucleon momentum down to an unexplored regime of . Compared to baseline predictions neglecting nuclear effects, the measured cross sections exhibit significantly greater suppression at lower . Additionally, the ratio of incoherent to coherent photoproduction is found to be constant across the probed and range, disfavoring the establishment of the black disk limit. This Letter provides critical insights into the -dependent evolution of fluctuating gluonic structures within nuclei and calls for further advancements in theoretical models incorporating nuclear shadowing and gluon saturation.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            The polarization of the and hyperons along the beam direction has been measured in proton-lead ( ) collisions at a center-of-mass energy per nucleon pair of 8.16 TeV. The data were obtained with the CMS detector at the LHC and correspond to an integrated luminosity of . A significant azimuthal dependence of the hyperon polarization, characterized by the second-order Fourier sine coefficient , is observed. The values decrease as a function of charged particle multiplicity, but increase with transverse momentum. A hydrodynamic model that describes the observed values in nucleus-nucleus collisions by introducing vorticity effects does not reproduce either the sign or the magnitude of the results. These observations pose a challenge to the current theoretical implementation of spin polarization in heavy ion collisions and offer new insights into the origin of spin polarization in hadronic collisions at LHC energies.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            A search for flavor-changing neutral current interactions of the top quark ( ) and the Higgs boson ( ) is presented. The search is based on proton-proton collision data collected in 2016–2018 at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, and corresponding to an integrated luminosity of . Events containing a pair of leptons with the same-sign electric charge and at least one jet are considered. The results are used to constrain the branching fraction ( ) of the top quark decaying to a Higgs boson and an up ( ) or charm ( ) quark. No significant excess above the estimated background was found. The observed (expected) upper limits at a 95% confidence level are found to be 0.072% (0.059%) for and 0.043% (0.062%) for . These results are combined with two other searches performed by the CMS Collaboration for flavor-changing neutral current interactions of top quarks and Higgs bosons in final states where the Higgs boson decays to either a pair of photons or a pair of bottom quarks. The resulting observed (expected) upper limits at the 95% confidence level are 0.019% (0.027%) for and 0.037% (0.035%) for .more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Bound states of charm and anticharm quarks, known as charmonia, have a rich spectroscopic structure that can be used to probe the dynamics of hadron production in high-energy hadron collisions. Here, the cross section ratio of excited and ground state vector mesons is measured as a function of the charged-particle multiplicity in proton-lead ( ) collisions at a center-of-mass (CM) energy per nucleon pair of 8.16 TeV. The data corresponding to an integrated luminosity of were collected using the CMS detector. The ratio is measured separately for prompt and nonprompt charmonia in the transverse momentum range and in four rapidity ranges spanning . For the first time, a statistically significant multiplicity dependence of the prompt cross section ratio is observed in proton-nucleus collisions. There is no clear rapidity dependence in the ratio. The prompt measurements are compared with a theoretical model which includes interactions with nearby particles during the evolution of the system. These results provide additional constraints on hadronization models of heavy quarks in nuclear collisions.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            The first search for a heavy neutral spin-1 gauge boson ( ) with nonuniversal fermion couplings produced via vector boson fusion processes and decaying to tau leptons or bosons is presented. The analysis is performed using LHC data at , collected from 2016 to 2018 with the CMS experiment and corresponding to an integrated luminosity of . The data are consistent with the standard model predictions. Upper limits are set on the product of the cross section for production of the boson and its branching fraction to or . The presence of a boson decaying to ( ) is excluded for masses up to 2.45(1.60) TeV, depending on the boson coupling to standard model weak bosons, and assuming a ( ) branching fraction of 50%.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Charged hadron elliptic anisotropies ( ) are presented over a wide transverse momentum ( ) range for proton-lead ( ) and lead-lead (PbPb) collisions at nucleon-nucleon center-of-mass energies of 8.16 and 5.02 TeV, respectively. The data were recorded by the CMS experiment and correspond to integrated luminosities of 186 and for the and PbPb systems, respectively. A four-particle cumulant analysis is performed using subevents separated in pseudorapidity to effectively suppress noncollective effects. At high ( ), significant positive values that are similar between and PbPb collisions at comparable charged particle multiplicities are observed. This observation suggests a common origin for the multiparticle collectivity for high- particles in the two systems.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            A measurement is presented of the cross section in proton-proton collisions for the production of two bosons and one boson. It is based on data recorded by the CMS experiment at the CERN LHC at center-of-mass energies and 13.6 TeV, corresponding to an integrated luminosity of . Events with four charged leptons (electrons or muons) in the final state are selected. Both nonresonant production and production, with the Higgs boson decaying into two bosons, are reported. For the first time, the two processes are measured separately in a simultaneous fit. Combining the two modes, signal strengths relative to the standard model (SM) predictions of and are measured for and 13.6 TeV, respectively. The observed (expected) significance for the triboson signal is 3.8 (2.5) standard deviations for , thus providing the first evidence for triboson production at this center-of-mass energy. Combining the two modes and the two center-of-mass energies, the inclusive signal strength relative to the SM prediction is measured to be , with an observed (expected) significance of 4.5 (5.0) standard deviations.more » « lessFree, publicly-accessible full text available August 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
